
 
 

Latin America URTeC: 3968978 
 

Exploration and Development based on RTH Technology and AI 
Gennady Erokhin1*; Maria Erokhina1; Kirill Safran1; Alexandre Iakovlev1,1.Geomex 
Technologies 
 
Copyright 2023, Latin America Unconventional Resources Technology Conference (LA URTeC) DOI 10.15530/urtec-2023-3968978 
 
This paper was prepared for presentation at the Latin America Unconventional Resources Technology Conference held in Buenos 

Aires, Argentina, 4-6 December 2023. 

The LA URTeC Technical Program Committee accepted this presentation on the basis of information contained in an abstract 

submitted by the author(s). The contents of this paper have not been reviewed by LA URTeC and LA URTeC does not warrant the 

accuracy, reliability, or timeliness of any information herein. All information is the responsibility of, and, is subject to corrections by 

the author(s). Any person or entity that relies on any information obtained from this paper does so at their own risk. The information 

herein does not necessarily reflect any position of LA URTeC. Any reproduction, distribution, or storage of any part of this paper by 

anyone other than the author without the written consent of LA URTeC is prohibited.  

 
 

Abstract 

 

The paper discusses exploration and development issues using artificial intelligence methods based on 

new seismic attributes of the RTH (Reverse Time Holography) method and well drilling data. RTH 

attributes are based on two-stage seismic data processing: on decomposition the initial common shot 

gathers in common image gathers, using the time-reversal algorithms and on synthesis a seismic 

attributes. It is shown that a detailed analysis of the joint behavior of two vectors: the velocity vector in 

forward wave and the velocity vector in time-reversed backward scattering wave provides detailed 

information about the medium.  The main differences between RTH attributes and traditional ones 

obtained during migration are their voxel nature and hyperattributivity. It turned out that this is a key 

advantage of the new approach to solving problems of geological prediction using artificial intelligence 

methods. The paper presents the results of using the new method for processing and interpreting 3D 

seismic data, as well as geological prediction based on RTH attributes for a number of oil and gas fields. 

Introduction 

 

The problems of predicting petrophysical parameters, as well as flow rates and other production 

characteristics are of significant interest, both in theoretical and practical aspects in the oil and gas 

industry. The inputs to the prediction are seismic attributes and well-log data. Presently  seismic attributes 

are typically calclated  in the time domain, while well-log data are depth-specific. This, along with the 

different detail of the information obtained in seismic and in the well, is the main difficulty in integrating 

seismic data and well-log data for the purpose of geological prediction of the properties of the medium 

throughout the entire space. Therefore, in most previous studies, well-log data are recalculated into the 

time domain, where their integration is carried out. The fundamental feature of the approach described in 

this paper, from all previous ones, is the use of new generation  depth-based seismic attributes  obtained 

using the  seismic processing method that implements principles of seismic holography and wave front 

reversal in time - the RTH (Reverse Time Holography) method (Erokhin, 2019) . The method is vector 

extensions of the well-known method of depth migration based on wave reversal in time - RTM (Reverse 

Time Migration) (Baysal et.al., 1983; Whitmore, 1983, McMechan, 1983). The RTH method includes, as 
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a special case, method based on a common image point - Angle Domain RTM (Yoon and Marfurd, 2006; 

Alkhalifah, 2015), diffraction analysis method ES360 (Koren and Ravve, 2011), CSP (Kremlev et .al., 

2011), method of angular anisotropy of reflection - Amplitude versus Offset (AVO) (Chopra and 

Castagna, 2014), acoustic inversion method (Tarantola, 1984), velocity tomography method based on full-

wave inversion (Virieux and Operto, 2009) or based on beam  tomography (Popovici et.al., 2016). RTН is 

a voxel-based method, that is, the assessment of seismic attributes is carried out in each cell (voxel) of 

geological space independently of each other. Voxels are of arbitrary size, and their coordinates are fixed 

in the space they fill. The set of seismic RTH attributes includes, in addition to all known attributes, a 

number of previously unknown ones. The total number of seismic attributes obtained based on the 

parameters estimation of multidimensional (10-dimensional) statistical distribution in the RTH method 

reaches several hundred (Erokhin, 2022). 

 

Theory and Methods 

 

Figure 1 shows a comparison of processing workflow in the RTM method (left) and in the RTH (right). 

The raw seismic data in both cases is the same - common shot gathers. Processing workflow  can be 

divided into two stages: decomposition stage, when the data is recalculated for each point in space (voxel) 

from the common shot gathers into the common image gathers  and an attribute synthesis stage. For the 

RTM method   decomposition uses the second-order acoustic wave equation for pressure, while for RTH 

it uses first-order acoustic equations for pressure and vector particle velocity. These equations are used for 

two waves: both forward and time-reversed backward. Obviously, for RTM the power of the data 

recalculated in this way, which makes up the Common Image Gathers (CIG) data set, will be significantly 

less than for RTH decomposition, where the Vector Domain Common Image Gathers (VDCIG) data set is 

formed. In RTM case  it is a data space of two parameters, whereas in RTH it is a data space of eight 

parameters. Next, at the second stage of the processing workflow - the stage of attribute synthesis, the 

resulting sets CIG and VDCIG are collapsed into attributes.  For RTM this occurs on the basis of 

integration over time and over sources (Imaging Condition), and for RTH based on estimates of the 

statistical distribution. As a result, for RTM one migration image is obtained - "RTM Imaging", and for 

RTH a countable number (100 or more) of formally constructed RTH attributes, including "RTM 

Imaging". It turns out that the set of RTH attributes constructed in this way includes all currently known 

attributes, including velocity. 

 

Figure 1. RTM &RTH processing workflow comparison 

 

The main difference between RTH attributes and traditional ones  is their voxel nature and hyper-

attributability. Figure 2 shows examples of depth sections of 3 cubes of seismic attributes. Figure 1a 
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shows a depth-section of a traditional PSDM depth migration cube. The vertical line indicates the author's 

identification of the fault using this attribute. The horizontal curved thin line corresponds to the roof of 

the foundation. Figure 1b shows one of the "phase" attributes of the RTH, which is similar to PSDM and 

Figure 1c is a depth-section of the RTH velocity cube. Here the thin wavy line corresponds to the velocity 

inversion - the boundary of high (top) and low values of the medium velocity (bottom). The inversion 

boundary coincides with the roof of the foundation. The joint interpretation of the RTH attributes of Fig 

1b, 1c allows us to clearly detail the faults  and a sharp decrease in velocity (green-burgundy colors in Fig 

1c) that is associated with fracturing. The size of spatial cells (voxels) in which the values of RTH 

attributes are estimated in Fig. 1b, 1c  are taken to be 12.5 meters by 12.5 meters laterally and 2.5 meters 

in depth. This example shows only two RTH attributes out of more than 300 obtained simultaneously 

during processing.  

 

                  

       a    b    c 

Figure 2. Comparison of PSDM depth section (a) and RTH Phase attributes (b) and RTH velocity attributes (c) for fractured foundation. Voxel 
size is 12.5x12.5x2.5 meters.  

 

It turned out that such hyper-attributability and high spatial resolution of the method are the key 

advantages of RTH as a method of processing seismic data over traditional migration methods such as 

RTM in solving prediction problems using artificial intelligence (AI) methods. Based on the calculated 

voxel-based attributes and well data, an information pairs are quite naturally formed in voxels 

encountered along the well trajectory: a set of RTH attributes - a set of well-log data that are used for 

machine learning (ML) (Fig. 3). 

 

Figue 3. Prediction technique based on RTH attributes and well-log data using AI approach 
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This technologically advanced formation of a training sample allows spatially precise (within voxel size) 

prediction of various lithofacies, petrophysical and other properties, as well as any parameters of a 

hydrocarbon field, using artificial intelligence methods. 

The RTH prediction roadmap consists of three stages. The first stage of RTH involves seismic data 

processing and interpretation. As a result, RTH attribute cubes, stratigraphic boundaries, fracture zones, 

fault zones, angular scattering anisotropy, etc. are obtained. Figure 4 shows one example of the result at 

this stage. The Figure shows a Frequency  Map in the productive gas horizon, built using only  the RTH 

attribute. At the second stage of prediction, a data set  of pairs  “RTH attributes” - “well data”  is prepared 

for training by a neural network. And at the third stage, the neural network itself is trained and the target 

geological attributes are predicted. Training is carried out based on either MLP (Multylayer Perceptron) 

or RF (Random Forest) algorithms. 

 

 

 

Figure 4. RTH Frequency  Map in the productive gas horizon:  from -50 Hz (red color, vector particle velocity rotates counterclockwise) up to 

+20 Hz (blue color,  vector particle velocity rotates clockwise)  

Results 

 

The roadmap presented in the article for predicting geological  parameters based on RTH attribute data 

and drilling data, consisting of 3 stages, is characterized by its simplicity and clarity. The RTH prediction 

process is technologically advanced and very effective for horizontal wells. This is explained  that for 

conventional  attributes, obtained on the basis of migration images (of the type shown in Fig. 2a)  

observed horizontal variability of attributes  is significantly inferior to the depth variability. At the same 

time, well-log data in horizontal wells have significant variability at small distances. In RTH attributes, 

horizontal variability is much higher than in RTM, and it is comparable to vertical variability. 

Figure 5 shows the results of the prediction porosity in some productive gas horizon. The thickness of the 

horizon is about 50 meters, the area is 120 sq. km. The prediction used porosity data from 9 wells. The 

prediction accuracy is high, as evidenced by the results of blind testing. Figure 6 shows oil production 

prediction based on available data at 4 wells and RTH attributes. In both predictions, the entire volume 

was divided into voxels with dimensions of 25 per 25 meters in lateral direction and 5 meters in depth. 
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Figure 5. Porosity prediction in Sandstone  based on RTH attributes and well-log data 

 

 

 

Figure 6. Prediction of Oil Production in Target Horizon 

Discussion 

Each step of the prediction approach described above, of course, needs to be tested for different 

geoscience conditions. Next, regarding the computational aspect of the RTH prediction. The choice of 

voxel size is very important, since the total volume of RTH attributes calculations depends on it. After all, 

all attributes are calculated for each individual voxel. To do this, a set of tasks is formed that are executed 

simultaneously on different computing cores of the supercomputer. The higher the detail (the greater the 

number of voxels), the more computing cores need to be used in calculations. The latter affects the cost of 

calculations. However, on the other hand, a large number of voxels affects the stability  and precision of 

the prediction (see strategy in Fig. 3). An important step in preparing data for prediction by ML is also the 

selection of the optimal set of “significant” attributes for a given specific task. This affects the learning 

speed of the neural network. The fewer attributes, the higher the learning rate. Optimization of all 

calculations in RTH approach using neural networks on graphics accelerators is the further path of 

necessary research. 
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Conclusions 

A new technology for processing and interpreting seismic data, called RTH, allows us to assess the 

geological structure of the Earth at a new qualitative level and so helps to optimize exploration and 

development costs. RTH technology aggregates many approaches into one, thereby sharply reducing the 

costs of using set separate specialized programs. In addition RTH approach dramatically increases the 

spatial resolution of seismic attributes. It turned out that the inherent RTH hyper-attributability and voxel-

based orientation is the key advantage of the new approach to solving problems of geological prediction 

using artificial intelligence methods and well data. The paper present the results of using RTH approach 

for processing and interpreting 3D seismic data, as well as for geological prediction  based on it for a 

number of oil and gas fields. 
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